人工智能诊断皮肤癌准确率达,人工智能诊断皮肤癌

澳门太阳娱乐2138,《超能陆战队》中的机器人暖男“大白”,在电影上映之后很是火爆了一阵子。大白的基本技能,“哔”一下完成对人类的健康状况的检查和诊断,是电影中对未来科技的想象之一。最近,这种想象已经接近于成为现实。Nature
杂志以封面文章的形式报道了一个斯坦福大学研究团队将人工智能和医学诊断相结合的最新成果。AI
通过分析图片,可以诊断出数种人类皮肤癌症。这项成果有别于传统的图像识别,科学家训练深度卷积神经网络(convolutional
neural
networks,CCNs,一种深度学习算法)去识别皮肤损伤,准确率堪比有多年行医经验的“专家级”人类医生。

原文出处:腾讯科技

作者:田文琦 班级:1402019 学号:14020199019

澳门太阳娱乐2138 1

澳门太阳娱乐2138 2

【嵌牛导读】:在未来,我们或许可以在手机上下载一个APP,开个摄像头让机器医生帮我们看一看,这是不是皮肤癌的早期症状。

图片来源:Nature

如果有一天,你突然发现身上的一颗痣变得有些奇怪,你会怎么做?虽然这可能是一个危险的信号,但很多人因为工作忙、去医院不便等种种原因,往往不会及时去检查。现在,人工智能为这个问题提供了更好的解决方案:在未来,我们或许可以在手机上下载一个APP,开个摄像头让机器医生帮我们看一看,这是不是皮肤癌的早期症状。

【嵌牛鼻子】:人工智能的医疗应用

皮肤损伤疾病可以分成三大类:第一种是非增殖性损伤,如痤疮等炎症;第二种是良性但对健康有害的细胞增殖,例如囊肿;第三种,也是最严重的,是恶性肿瘤,癌细胞不受控地增殖,并具有转移到其他器官组织的风险,需要尽快治疗。

斯坦福大学一个联合研究团队开发出了一个皮肤癌诊断准确率媲美人类医生的人工智能,相关成果刊发为了1月底《自然》杂志的封面论文,题为《达到皮肤科医生水平的皮肤癌筛查深度神经网络》(Dermatologist-level
classification of skin cancer with deep neural
networks)。他们通过深度学习的方法,用近13万张痣、皮疹和其他皮肤病变的图像训练机器识别其中的皮肤癌症状,在与21位皮肤科医生的诊断结果进行对比后,他们发现这个深度神经网络的诊断准确率与人类医生不相上下,在91%以上。

【嵌牛提问】:人工智能对现代癌症诊断有什么帮助?

澳门太阳娱乐2138 3

深度学习为医学添砖加瓦

【嵌牛正文】:

皮肤疾病的分类。图片来源:Nature

在中国,皮肤癌并不是癌症家族中特别瞩目的成员,这是因为黄种人的皮肤癌发病率要低于白种人。但在美国,皮肤癌却是最常见的癌症之一。每年约有540万美国人罹患皮肤癌。以黑色素瘤为例,如果在五年之内的早期阶段检测并接受治疗,生存率在97%左右;但在晚期阶段,存活率会剧降到14%。因而,早期筛查对皮肤癌患者来说生死攸关。

     
 如果有一天,你突然发现身上的一颗痣变得有些奇怪,你会怎么做?虽然这可能是一个危险的信号,但很多人因为工作忙、去医院不便等种种原因,往往不会及时去检查。现在,人工智能为这个问题提供了更好的解决方案:在未来,我们或许可以在手机上下载一个APP,开个摄像头让机器医生帮我们看一看,这是不是皮肤癌的早期症状。

临床上,皮肤科医生通过观察患者皮肤患病处的状况来帮助进行诊断,当然还需要一些非视觉检查手段的辅助。之前已有研究表明,对于一些类型的皮肤癌,医生们面对面地观察病患,或者研究拍摄的皮肤图像,诊断结果相差并不大(J.
Am. Acad. Dermatol., 2015, 72,
426-435)。这说明,基于图像的诊断有希望用于这类皮肤癌的早期诊断,或者帮助决定是否需要立即进行进一步的处理。这样的诊断结果可以通过后续的临床样本活检,验证其准确性。

一般情况下,来到医院或诊所后,医生会基于视觉诊断进行临床筛查,再对疑似病变部位依次进行皮肤镜检查、活体组织切片检查和病理学诊断。

     
 斯坦福大学一个联合研究团队开发出了一个皮肤癌诊断准确率媲美人类医生的人工智能,相关成果刊发为了1月底《自然》杂志的封面论文,题为《达到皮肤科医生水平的皮肤癌筛查深度神经网络》(Dermatologist-level
classification of skin cancer with deep neural
networks)。他们通过深度学习的方法,用近13万张痣、皮疹和其他皮肤病变的图像训练机器识别其中的皮肤癌症状,在与21位皮肤科医生的诊断结果进行对比后,他们发现这个深度神经网络的诊断准确率与人类医生不相上下,在91%以上。

一个医生对皮肤癌症诊断的准确率有赖于经验的积累,这对患者来说并不总是好事,毕竟经验丰富的医生相对于病人来说永远都很稀少。

医生使用皮肤镜进行检查。但由于各种各样的原因,很多人并不会及时为皮肤上出现的一些细小症状而跑一趟医院。因而,基于人工智能的家用便携式皮肤癌诊断设备将大大提高早期皮肤癌的筛查覆盖率,挽救更多人的生命。但是,癌症诊断,差之毫厘,谬以千里,人工智能能够胜任将黑色素瘤从普通的痣中筛选出来的任务?斯坦福大学这个联合研究团队的结论是:基于深度学习的机器医生诊断准确率十分惊人。

     
 在中国,皮肤癌并不是癌症家族中特别瞩目的成员,这是因为黄种人的皮肤癌发病率要低于白种人。但在美国,皮肤癌却是最常见的癌症之一。每年约有540万美国人罹患皮肤癌。以黑色素瘤为例,如果在五年之内的早期阶段检测并接受治疗,生存率在97%左右;但在晚期阶段,存活率会剧降到14%。因而,早期筛查对皮肤癌患者来说生死攸关。